Specific heat and enthalpy

Schweitzer

Q:How do you know how much energy

 is released from a reaction.- $1^{\text {st }}$ you need to have some way to collect and quantify the energy.
- This is done using what is called a calorimeter.
- $2^{\text {nd }}$ you will need to understand the concept of specific heat.

Calorimeter: device that insulates from energy loss.

Specific heat

- Specific heat = amount of energy needed to raise 1 gram of a substance 1 degree Celsius.
- The specific heat of water is $1 \mathrm{cal} / \mathrm{g} \mathrm{C}$ or

$$
4.18 \mathrm{~J} / \mathrm{gC}
$$

Important: As different objects absorb energy the increase in temperature is not equal.
-- So specific heat relates Temperature change to energy change.

Specific heat Conceptually

- Example:
- A snowmobiler who falls into 32F water can only last minutes before death.
- A person sits on their front porch (32F) in shorts can last hours.
- What is the difference?
- The water has a very high specific heat requiring a lot of energy to raise it up in temperature.
- A body will transfer or absorb energy to its surrounding until the temperature between the body and its surroundings are equal.

- WHAT EVER ENERGY IS LOST BY THE BLOCK IS GAINED BY THE WATER.

In order to determine an unknown you must have a known to compare it to.

- As a substance loses/gains energy we must have a known substance to absorb/release the energy.
- With a known substance collecting energy we will be able to quantify the energy using the following equation
$q=m * c * \Delta T$

$$
q=m^{*} c^{*} \Delta T
$$

- q = energy (joules or calories)
- $\mathrm{M}=$ mass (grams)
- $\mathrm{C}=$ specific heat (J/g C or cal/g C)
- $\mathrm{T}=$ Change in temperature

Simple Specific Heat Question

In Reality, given the appropriate data one could solve for any of these variables

A 250 g block of Copper (specific heat $=.386 \mathrm{~J} / \mathrm{gC}$) at 25 C gains 3 Kj of energy. What is the final temperature?

Block	Variable	
	Mass	
	Specific heat	
	Temp - initial	
	Temp - Final	
	Energy	

Simple Specific Heat Question

In Reality, given the appropriate data one could solve for any of these variables

A 250 g block of Copper (specific heat $=.386 \mathrm{~J} / \mathrm{gC}$) at 25 C gains

$$
3 \mathrm{Kj} \text { of energy. What is the final temperature? }
$$

$$
\begin{aligned}
& q=m(\mathrm{Tf}-\mathrm{Ti}) * \mathrm{c} \quad \text { Solve for } \mathrm{Tf} \text { or just solve for } \Delta \mathrm{T} \\
& 3000 \mathrm{~J}=250 * \Delta \mathrm{~T} * .386 \quad \Delta \mathrm{~T}=31.0 \mathrm{C} \mathrm{Tf}=56
\end{aligned}
$$

Block	Variable	
250g	Mass	
.386	Specific heat	
25C (273)	Temp - initial	
$?$	Temp - Final	
3000J	Energy	3000

Simple Specific Heat Question

If the same amount of energy is applied to an aluminum block. What happens to the change in temperature of that block.

A 250 g block of Aluminum (specific heat $=.90 \mathrm{~J} / \mathrm{gC}$) at 25 C gains 3 Kj of energy. What is the final temperature? $\mathrm{q}=\mathrm{m}(\mathrm{Tf}-\mathrm{Ti}){ }^{*} \mathrm{c} \quad$ Solve for Tf or just solve for $\Delta \mathrm{T}$ $3000 \mathrm{~J}=250 * \Delta \mathrm{~T} * .90 \quad \Delta \mathrm{~T}=13.3 \mathrm{C} \quad \mathrm{Tf}=38 \mathrm{C}$

Block	Variable	
250g	Mass	
.90	Specific heat	
25C (298)	Temp - initial	
$?$	Temp - Final	
3000J	Energy	3000J

Lab Calculation

A 100 C 50 g block is placed in 100 g of water at 25 C after the temperatures have come to equilibrium the final temperature of the system is measured to be 28C. What is the specific heat of the metal

Block	Variable	Water
50	Mass	100
$?$	Specific heat	4.18
100	Temp - initial	25
28	Temp - Final	28
$?$	Energy	$?$

Calculations

What is the specific heat of the metal?
$1^{\text {st }}$ Calculate the energy the water absorbed.
$\mathrm{q}=\mathrm{m}$ *(Tf-Ti) * c

$$
100 * 3 * 4.18=1254 \mathrm{~J}
$$

Block	Variable	Water
50	Mass	100
$?$	Specific heat	4.18
100	Temp - initial	25
28	Temp - Final	28
$?$	Energy	1254

Calculations

What is the specific heat of the metal?

Since all the energy that the water gained came from the block the energy the block lost is equal to the water except it is negative because it loosing water.
Next solve for Specific Heat.....

Block	Variable	Water
50	Mass	100
$?$	Specific heat	4.18
100	Temp - initial	25
28	Temp - Final	28
-1254	Energy	1254

Calculations

What is the specific heat of the metal?
$q=m^{*}(T f-T i){ }^{*} c$
$-1254=50$ * $28-100)^{*}$?
? = .34J/g C Check specific heat chart to verify identity

Block	Variable	Water
50	Mass	100
$?$	Specific heat	4.18
100	Temp - initial	25
28	Temp - Final	28
-1254	Energy	1254

Specific Heat chart

- Substance
- Aluminum
- Bismuth
- Copper
- Brass
- Iron
- Gold
- Lead
- Silver
- Tungsten
- Zinc
- Mercury
- Alcohol(ethyl)
- Water
- Ice (-10 C)
- Granite
- Glass
0.900
0.123
0.386
0.380
. 340
0.126
0.128
0.233
0.134
0.387
0.140
2.4
4.186
2.05
.790
. 84

Does this make sense?

Make sure you look at the physical description!

Advanced Calorimetry

- 40 grams of NaOH is dropped in to a $1 / 2$ liter of water. The temperature of the water increases from 25C to 85C.
- Determine the Energy/mole of NaOH .
- This is also the Enthalpy for the following reaction.

$$
\mathrm{NaOH}=\mathrm{Na}^{+}+\mathrm{OH}^{-}
$$

Calculations

What are we trying to figure out.
-- Energy/mole = KJ/mol
Determine the energy gained by the water.

$$
\begin{aligned}
q & =m(t f-t i) c \\
& =500 \mathrm{~g} * 60 * 4.18 \\
q & =125400 \mathrm{~J} \text { or } 125.4 \mathrm{~kJ}
\end{aligned}
$$

Determine the moles of NaOH (molar mass $=40 \mathrm{~g} / \mathrm{mol}$) $40 \mathrm{~g}(1 \mathrm{~mol} / 40 \mathrm{~g})=1 \mathrm{~mole}$ Determine the kJ/mol $125.4 \mathrm{~kJ} / 1 \mathrm{~mole}=125.4 \mathrm{~kJ} / \mathrm{mol}$

NaOH	Variable	Water
40	Mass	500
	Specific heat	4.18
	Temp - initial	25
	Temp - Final	85
$?$	Energy	$?$

What would be the final temperature if two liquids are mixed?

- You are given two 50 gram samples of water. One is $100 \mathrm{C}(373 \mathrm{~K})$ and one is 0 C .(273) What is the final temperature?
- Logically speaking the temperature is 50C.
- But how do you calculate the answer?

$\mathrm{H}_{2} \mathrm{O}_{\text {hot }}$	Variable	$\mathrm{H}_{2} \mathrm{O}_{\text {cold }}$
50	Mass	50
4.18	Specific heat	4.18
373	Temp - initial	273
$?$	Temp - Final	$?$
$-x$	Energy	$+x$

Calculation

- Energy lost from hot water = energy gained by cold water
- $\mathrm{M}_{\mathrm{H}^{*}}\left(\mathrm{Tf}-\mathrm{Ti}_{\mathrm{H}}\right)^{*} \mathrm{C}_{\mathrm{H}}=-\mathrm{q}_{\mathrm{H}}=\mathrm{q}_{\mathrm{c}}=\mathrm{M}_{\mathrm{c}}{ }^{*}\left(\mathrm{Tf}-\mathrm{Ti}_{\mathrm{c}}\right)^{*} \mathrm{C}_{\mathrm{c}}$
- To drop out q's they must be equal
- $\mathrm{M}_{\mathrm{H}^{*}}\left(\mathrm{Tf}-\mathrm{Ti}_{\mathrm{H}}\right)^{*} \mathrm{C}_{\mathrm{H}}=-\mathrm{q}_{\mathrm{H}}=-\mathrm{q}_{\mathrm{C}}=\mathrm{M}_{\mathrm{c}} *\left(\mathrm{Tf}-\mathrm{Ti}_{\mathrm{c}}\right) * \mathrm{C}_{\mathrm{c}} *-1$
- $\mathrm{M}_{\mathrm{H}^{*}}\left(\mathrm{Tf}-\mathrm{Ti}_{\mathrm{H}}\right) * \mathrm{c}_{\mathrm{H}}=\mathrm{M}_{\mathrm{c}} *\left(\mathrm{Tf}-\mathrm{Ti} \mathrm{C}_{\mathrm{c}}\right) * \mathrm{c}_{\mathrm{c}}{ }^{*}$-1 (Insert values)
- 50 * (Tf-373) * $4.18=50$ * (Tf-273) * 4.18 *-1

Multiply, combine, simplify solve for Tf

Combine and simplify

- $50 *(T f-373) * 4.18=50 *(T f-273) * 4.18 *-1$
- $50 *(T f-373) * 4.18=50 *(T f-273) *-4.18$
- 209. $(T f-373)=-209(T f-273)$ Distribute
- 209Tf $-77957=-209 \mathrm{Tf}+57057$ Isolate Tf
- $418 T f=135014$
- $\mathrm{Tf}=323 \mathrm{~K}=50 \mathrm{C}$

